After a very frustrating time spent with the innards of Probey, I have come to a disturbing conclusion: My circuit board eats chips.
By which I mean, for some reason, the circuit I designed and built has been destroying the ($50 each, thank you very much ... did I mention nothing in aviation is cheap?) pressure sensor chips. Right under my very own eyes, one chip that was doing just fine and answering as it should at I2C address 0x29, after being plugged into the board to test the various sockets, just stopped working and did not respond to I2C messages at all.
I am ensuring the board is powered off prior to connecting and disconnecting things. BUT it may well be that the Fio V3 is not really powering off the buses when it's turned "off" so long as it has a battery connected, and perhaps the resulting discharge when parts are connected and disconnected causes them to fail. I am trusting the Fio to turn itself off while I swap chips with the battery connected. Maybe I should disconnect the battery before swapping chips.
Perhaps also the All Sensors chips are particularly sensitive to power transients and ESD? I don't know.
I put together an independent breadboard test rig to test the chips away from any other weird circuitry:
This rig is my determinant of whether a chip has been eaten or not. And in fact, again, a "good" chip showed up on 0x29 in the test rig and in the probe, then stopped responding in the probe, and back in the test rig was also not responding. So the probe board eats chips. Simple as that.
By which I mean, for some reason, the circuit I designed and built has been destroying the ($50 each, thank you very much ... did I mention nothing in aviation is cheap?) pressure sensor chips. Right under my very own eyes, one chip that was doing just fine and answering as it should at I2C address 0x29, after being plugged into the board to test the various sockets, just stopped working and did not respond to I2C messages at all.
I am ensuring the board is powered off prior to connecting and disconnecting things. BUT it may well be that the Fio V3 is not really powering off the buses when it's turned "off" so long as it has a battery connected, and perhaps the resulting discharge when parts are connected and disconnected causes them to fail. I am trusting the Fio to turn itself off while I swap chips with the battery connected. Maybe I should disconnect the battery before swapping chips.
Perhaps also the All Sensors chips are particularly sensitive to power transients and ESD? I don't know.
I put together an independent breadboard test rig to test the chips away from any other weird circuitry:
This rig is my determinant of whether a chip has been eaten or not. And in fact, again, a "good" chip showed up on 0x29 in the test rig and in the probe, then stopped responding in the probe, and back in the test rig was also not responding. So the probe board eats chips. Simple as that.